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ABSTRACT
We present a predictive power controller for state estimation of a
stationary ARMA process over a wireless sensor network (WSN),
consisting of sensor nodes, relays, and a single gateway (GW). The
state estimate is formed centrally at the GW by using packets re-
ceived from sensors and relays. The latter perform network coding
of sensor measurements.

Communication from sensors and relays to the GW is over a
fading channel. Packet loss probabilities depend upon the time-
varying channel gains and the transmission powers used. To achieve
an optimal trade-off between state estimation quality and energy
expenditure, in our approach the GW decides upon the in general
time-varying transmission powers of sensors and relays. This deci-
sion process is carried out on-line and adapts to changing channel
conditions by using elements of stochastic model predictive control.
Simulations on measured channel data illustrate the performance
achieved by the proposed controller.

1. INTRODUCTION

Wireless sensor networks (WSNs) have recently emerged as an im-
portant alternative to wired sensor networks for a widespread of ap-
plications, e.g., target-tracking and data acquisition [5,15]. A WSN
typically consists of several sensor nodes and perhaps a few control
nodes. The sensor nodes are equipped with a sensing component (to
measure e.g., temperature), a processing device (to perform simple
computations on the measured raw data), and a communication de-
vice, e.g., a transceiver (to communicate with the control nodes and
perhaps nearby sensor nodes). A relay can be introduced either to
increase coverage or to improve performance, be it increase accu-
racy, throughput or robustness. A relay can also be part of a higher
layer in a hierarchical network. As such it can be either more capa-
ble or have more available energy.

The wireless communication channel between nodes in the
WSN is subject to fading, which frequently causes packet errors.
A key aspect is that the time-variability of the fading channel can
be alleviated by dynamically adjusting the power levels. Whilst
to keep packet error rates low, high transmission power should be
used, this is rarely an option in WSNs, since in most applications
sensor nodes are expected to be operational for several years with-
out the replacement of batteries; see, e.g., [7, 17]. Another aspect
is that many of the available sensor nodes have a constrained trans-
mission power.

In the present work, we consider a WSN architecture having
M sensor nodes, J relays and a single GW. The WSN is set up to
provide estimates of the state vector sequence {x(k)} of a stationary
process described via

x(k+1) = Ax(k)+w(k), k ∈ {0,1, . . .}, (1)

where the initial state x(0) ∈ Rn is zero-mean Gaussian distributed
with covariance matrix P0 and the noise process {w(k)} is i.i.d.
zero-mean Gaussian distributed with covariance matrix Q.
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Figure 1: Centralized state estimation with a WSN having M = 2
sensors and J = 1 relays. The dashed lines denote fading channels
which introduce random transmission errors.

Each sensor m ∈ {1, . . . ,M}, provides noisy measurements
given by

ym(k) =Cmx(k)+ vm(k), k ∈ {0,1, . . .}, (2)

where {vm(k)} is i.i.d. zero-mean Gaussian distributed with covari-
ance matrix Rm. The measurements in (2) are quantized (with a
given uniform quantizer) and transmitted at an appropriate power
level over a fading channel (causing random packet loss) to the gate-
way and relays. The latter perform network coding and forward
processed sensor measurements whenever appropriate to the GW.
To avoid interference between nodes, the communication channel
is accessed in a TDMA fashion with a pre-designed protocol.

At the GW, received packets from the sensors and relays are
then used to estimate x(k) by means of an appropriate time-varying
Kalman Filter. Fig. 1 depicts a simple instance of the overall con-
figuration of the system under study.

The main contribution of this paper is to present a centralized
predictive controller for sensor and relay transmission power levels
within the WSN architecture examined. The controller is located
at the GW and trades off energy use for estimation accuracy. The
present work complements our recent papers, such as [10, 12, 13],
to encompass WSNs with relays. The extension proposed in the
present work will be shown to have the potential to give significant
performance gains.

2. QUANTIZATION AND NETWORK CODING

Before developing the power controller in Section 5, we will first
describe some aspects of the WSN configuration which are relevant
to the state estimation problem at hand. For this purpose, in this
section, we will focus on quantization and network coding, whereas
in Section 3 we will discuss communication issues.

2.1 Quantization
Throughout this work, we will be using standard high-resolution
source coding results [4].

Each sensor node is equipped with an encoder which maps the
measurement (i.e., the source symbol) ym(k) ∈ R to a sequence of
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Data successfully received Values reconstructed
s1(k), s2(k), r1(k) ŷ1(k), ŷ2(k)

s1(k), s2(k), ŷ1(k), ŷ2(k)
s1(k), r1(k) ŷ1(k), ŷ2(k)
s2(k), r1(k) ŷ1(k), ŷ2(k)

s1(k) ŷ1(k),
s2(k) ŷ2(k)
r1(k) none
none none

Table 1: Reconstructed values at the GW of the WSN in Fig. 1 with
network coding as described in Section 2.2.

bits, say sm(k), so that the average bitrate is bm. More specifically,
the encoder at sensor m consists of two components; a scalar uni-
form quantizer Qm and an entropy encoder Em. The decoder (which
is located at the GW) also has two components; an entropy decoder
and the reconstruction function which outputs ŷm(k).

Under high-resolution assumptions, it is known that the rate bm
of an entropy-constrained scalar quantizer is given by1

bm ≈ H(ŷm(k))≈ h(ym(k))− log2(∆m) (3)

where H(ŷ(k)) denotes the discrete entropy of the quantized (dis-
crete) random variable ŷ(k), h(ym(k)) denotes the differential en-
tropy of the random variable ym(k) and ∆m denotes the stepsize
of the uniform scalar quantizer. For simplicity, we will in the se-
quel assume that {ym(k)}∞

k=0 is a stationary process with ym(k)
being zero-mean Gaussian with variance σ2

ym
. Its differential en-

tropy is then given by h(ym(k)) = 1
2 log2(2πeσ2

ym
) . Under high-

resolution assumptions, it is known that the expected distortion Dm
(in the mean squared error sense, i.e. Dm = E‖ym(k)− ŷm(k)‖2) of
an entropy-constrained scalar uniform quantizer satisfies

Dm ≈
πe
6

σ
2
ym

2−2bm (4)

where the rate bm is given in (3).
The sensor measurements need to be encoded, i.e., converted

into a bit-stream, before they can be transmitted to the GW. A sim-
ple but efficient coding method is scalar uniform quantization fol-
lowed by scalar entropy coding. Thus, ym(k) is quantized using
the quantizer Qm resulting in the index im(k), which refers to a
codeword in the quantizer’s codebook. This index is further en-
tropy coded and the resulting bit-stream of length bm bits is de-
noted sm(k). At the gateway, the index im(k) is recovered by us-
ing the appropriate entropy decoder and the reconstruction ŷm(k) is
obtained simply as the im(k)-th codeword in the codebook of the
chosen quantizer. A scalar uniform quantizer with step-size ∆m can
be efficiently implemented without the need of searching for the
nearest element in a codebook by simply scaling ym(k) by ∆m fol-
lowed by rounding, i.e. by forming bym(k)/∆me where b·e denotes
rounding to the nearest integer. At the gateway, the signal is re-
constructed by simply applying the inverse scaling, i.e., we have
ŷm(k) = bym(k)/∆me∆m. In principle, the quantizer has unbounded
support but the analog to digital converter in the sensor bounds the
support of the input to the quantizer. Furthermore, the quantized
output needs to be entropy encoded before being transmitted to the
gateway. The entropy coder consists of a codebook,which due to
memory considerations cannot be arbitrarily large. In practice, we
choose the size of the codebooks so that the probability of falling
outside the support of the entropy coder is very small and the impact
of the outliers on the total distortion is therefore negligible.

2.2 Network Coding
In traditional networks, intermediate nodes are limited to (or only
permitted to) perform simple operations on the incoming data, such

1The approximation becomes exact in the limit as the distortion tends to
zero (or equivalently as the rate diverges to infinity) [4].

as duplication and forwarding. Moreover, traditionally there has
been a preference to avoid data “collisions” at intermediate nodes.
With network coding, on the other hand, the intermediate network
nodes are allowed to mix2 the incoming data in such a way that
the original data can be recovered at the network edges. This in-
creased flexibility in the network architecture generally provides a
more cost-efficient transportation of information [1, 3, 18].

In the present work, the relays act as intermediate network
nodes and are able to perform simple network coding on the data.
As illustrated in Fig. 1, the relays are overhearing broadcast com-
munication from the sensors to the GW, and are therefore able to
aid the GW with additional information about the sensors’ data. In
particular, the relays will XOR the incoming data at a bit level, i.e.,
without decoding, see [3].

For example, consider the WSN in Fig. 1 and assume that the
GW has received either only s1(k) or only s2(k), but the relay has
received both s1(k) and s2(k). Then, if the relay successfully trans-
mits

r1(k) = s1(k)⊕ s2(k) (5)

to the GW, then the GW is able to recover both s1(k) and s2(k) by
use of its own message s1(k) or s2(k). The situation is depicted in
Table 1.

At the sensors, we may aggregate data in buffers before broad-
casting. If the sensor buffers are not of the same size (measured in
bits) or, more generally, if the bit-streams received by the relays are
not of the same size (in bits), then the relay might have to spend ad-
ditional bits on informing the GW about the symbol sizes in order to
guarantee that the GW can successfully recover the coded data. In
this respect, it is worth mentioning that the individual symbols si(k)
have varying lengths, since we are using variable length quantiza-
tion. However, the network coding must be applied on symbols of
equal length. At the relay, we therefore simply zero pad the short-
est symbols in order to make them all of equal length. By using
uniquely decodable entropy codes, there will be no confusion at the
GW, as of what the length of the individual symbols are. This is so,
since no codeword is part of another codeword (in the same code).
The average bit-rate at the relay, is therefore upper bounded by

br
j ≤ ∑

i1,...,iM
pi1 · · · piM max{|si1 |, . . . , |siM |}, (6)

where |sim | denotes the cardinality, i.e., the size in bits, of the ith
symbol (codeword) transmitted by the mth sensor, and pim is the
corresponding probability of receiving that symbol.

3. COMMUNICATION ASPECTS

Since the communication medium is wireless, several issues arise.
These are discussed in the present section.

3.1 Communication Protocol
To avoid the nodes to interfere with each other, in the present work,
communication is assumed to be scheduled in a TDMA fashion.
The transmission protocol is periodic and pre-defined. Furthermore,
all devices are half-duplex, i.e., they cannot transmit and receive at
the same time.

For ease of exposition, we will adopt a simple protocol, wherein
at the instants k∈{0,1, . . .}, all M sensors take measurements ym(k)
and form the symbols sm(k). These values are then successively
broadcast during the TDMA time slots t ∈ {0,1, . . . ,M−1}. During
time slots t ∈ {M,M + 1, . . . ,M + J− 1}, the relays may broadcast
the values r j(k). During the last time-slot, namely t = M + J, the
GW forms the state estimate x̂(k). During that time slot, the GW
also transmits the power levels that the sensors and relays are to use
at the next instant, k+1. A simple instance of this communication
protocol is depicted in Fig. 2.

2Typically, only linear combinations of received information is per-
formed [1, 3].
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Figure 2: Transmission Protocol with a WSN having M = 2 sensors
and J = 1 relays.
3.2 Transmission Effects
Since communication is over wireless fading channels, random
transmission errors will occur. In our approach, corrupted data
will be not be used further (save for possible channel gain estima-
tion). We thus model transmission effects by introducing the binary
stochastic arrival processes γsGW

m = {γsGW
m (k)}k∈N0 , defined via

γ
sGW
m (k) =

{
1 if sm(k) arrives error-free at time k,
0 otherwise,

(7)

where the superscript sGW denotes the channel between a sensor
and the GW. Relay channel effects are modeled in a similar man-
ner, namely, by introducing the binary processes γsr

m (k) and γrGW
j (k)

where sr and rGW denote the channel between a sensor and the relay
and the channel between the relay and the GW, respectively.

The success probabilities λ
ξ
m(k) , P{γξ

m(k) = 1}, where ξ ∈
{sGW,sr}, satisfy:

λ
ξ
m(k) =

(
1−β

ξ
m
(
um(k)g

ξ
m(k)

))bm
. (8)

In (8), bm denotes the packet length (which we take equal to the
bit-rate, see (3)), gm(k) refers to the channel power gain, i.e., the
square of the magnitude of the complex channel3, um(k) is the trans-
mission power used by the mth sensor radio power amplifier, and
βm(·) : [0,∞) → [0,1] is the bit-error rate (BER). The latter is a
monotonically decreasing function, which depends on the modu-
lation scheme employed, see, e.g., [11, 12], for specific cases.

Similarly, the success probabilities λ rGW
j (k) , P{γrGW

j (k) =
1}, j ∈ {1,2, . . . ,J} are given by

λ
rGW
j (k) =

(
1−β

r(
µ j(k)grGW

j (k)
))br

j
, (9)

where µ j(k) and br
j(k) are the power and bit-rate used by the jth re-

lay, respectively; grGW
j (k) is the channel gain between the jth relay

and the GW, and β r
j (·) : [0,∞) → [0,1] is the BER of the corre-

sponding relay channel.

3.3 Power Issues
It follows from (8) and (9), that one can improve transmission relia-
bility and, thus, state estimation accuracy for a given wireless prop-
agation environment by simply increasing the power levels used by
the transmitters. However, in WSNs it is of fundamental importance
to save energy. Thus, transmission powers are a precious resource.
In Section 5, we will present a control method, where transmission
powers are assigned in an on-line manner, with the aim to optimize
estimation accuracy without incurring excessive energy use.

Before proceeding, we note that one can quantify the energy
used by each sensor m ∈ {1, . . . ,M} at a given (discrete) time in-
stant, k, via Em(um(k)), where

Em(um(k)),

um(k)
bm

α
+EP if um(k)> 0,

0 if um(k) = 0.
(10)

3Note that gm(k) is here defined to include also path-loss, power ampli-
fier efficiency, antenna gain and noise figure.

γsGW
1 γsGW

2 γsr
1 γsr

2 γrGW
1 γ1 γ2

1 1 1 1 1 1 1
1 1 1 0 0 1 1
1 1 0 1 0 1 1
1 1 0 0 0 1 1
1 0 1 1 1 1 1
0 1 1 1 1 1 1
1 0 1 0 0 1 0
1 0 0 1 0 1 0
1 0 0 0 0 1 0
0 1 1 0 0 0 1
0 1 0 1 0 0 1
0 1 0 0 0 0 1
0 0 1 1 1 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0

Table 2: Reconstruction processes of the WSN in Fig. 1 with net-
work coding as described in Section 2.2. Note that the relay trans-
mits only if it has received both s1 and s2.

In (10), EP denotes the processing cost, i.e., the energy needed for
wake-up, circuitry and sensing and α is the channel bit-rate.

Due to physical limitations of the radio power amplifiers, the
transmission power levels of the sensors are constrained, for given
values {umax

m }, according to:

0≤ um(k)≤ umax
m , ∀k ∈ N0, ∀m ∈ {1,2, . . . ,M}. (11)

The energy consumption of the relays can be quantified sim-
ilarly by introducing energy functions Er

j(µ j(k)) and constraints
{µmax

j }. Note that the relays transmit only if the sensor data needed
to perform network coding has been successfully received, see Sec-
tion 2.2.

4. FORMING THE STATE ESTIMATE

To formulate the state estimate, it is useful to introduce the recon-
struction processes, γm(k), defined via:

γm(k) =
{

1 if ŷm(k) can be reconstructed at time k,
0 otherwise

(12)

Since the relays employ network coding, the values γm(k) are a de-
terministic function of the processes γsGW

m (k), γsr
m (k) and γrGW

j (k)
introduced in Section 3.2. For example, for the case given in Ta-
ble 1, the processes γ1(k) and γ2(k) are determined as per Table 2.

We will assume that the gateway knows, whether packets re-
ceived from the sensors and relays contain errors or not. Thus, at
any time k, past and present realizations of the overall reconstruc-
tion process, i.e., {γm(k− `)}`≥0, m∈{1,...,M}, are available at the
gateway. A key aspect here is that, for state estimation purposes, the
system amounts to sampling (1)-(2) only at the successful transmis-
sion instants of each sensor link. Consequently, the time-varying
Kalman filter for the system (1) with output matrix

C(k),
[
γ1(k)(C1)

T . . . γM(k)(CM)T
]

(13)

gives the best linear state estimates; see, e.g., [16]. These are given
by: x̂(k+1) = Ax̂(k)+K(k+1)

(
ŷ(k+1)−C(k+1)Ax̂(k)

)
, where

ŷ(k+1), [ŷ1(k) ŷ2(k) . . . ŷM(k)]T

K(k), P(k)C(k)T (C(k)P(k)C(k)T +R(k)
)−1

P(k+1), AP(k)AT +Q−AK(k)C(k)P(k)AT

R(k), diag
(
R1 +D1, . . . ,RM +DM

)
,

(14)

with {Dm} being the distortions due to quantization, see (4). The
recursion in (14) is initialized with P(0) = P0, x̂(0) = 0.



5. ON-LINE DESIGN OF POWER LEVELS

We have seen that designing the sensor and relay transmission pow-
ers involves a trade-off between transmission error probabilities
(and, thus, state estimation accuracy) and energy use. We will next
present a controller which optimizes this trade-off over a future pre-
diction horizon. The controller is located at the gateway (control
node). Its output contains information on the power levels to be
used by the M sensors and J relays.

5.1 Signaling
To save signal processing energy at the sensors and relays, we would
like to limit power control signaling as much as possible. In par-
ticular, the command signal for each sensor and relay will contain
finitely quantized power increments, say δum(k) and δ µ j(k) rather
than the actual power values, um(k) and µ j(k). Upon reception of
these increments the power level to be used by the radio power am-
plifiers are selected by simply setting

um(k) = um(k−1)+δum(k), m ∈ {1, . . . ,M}
µ j(k) = µ j(k−1)+δ µ j(k), j ∈ {1, . . . ,J}.

5.2 Predictive Control
In order to trade energy consumption for estimation cost, at each
time instant k, the proposed controller examines the finite horizon
cost function

V (k) =V1(k)+ρV2(k), (15)

where ρ ≥ 0 is a design parameter and

V2(k),
k+N

∑
`=k+1

(
M

∑
m=1

Em(um(`))+
J

∑
j=1

Er
j(µm(`))

)
(16)

is the predicted energy consumption of the sensors and relays over
a horizon N. In (15),

V1(k),
k+N

∑
`=k+1

E
{

trace{P̄(`)}
}

(17)

quantifies the estimation cost through the expected trace of4

P̄(k) = P(k)−K(k)C(k)P(k). (18)

Expectation in (17) is with respect to {γm(k)}, i.e., the set of pos-
sible reconstructions outcomes, see (12). The probability mass dis-
tribution of this set depends through the different transmission out-
comes upon the decision variables, i.e., the power level increments.

At every time instant k (and during its assigned time slot),
the predictive controller finds the optimal values {δum(k)} and
{δ µ j(k)} through a brute-force search strategy, where the cost
function V (k) is evaluated for all possible combinations of power
level increments over the prediction horizon. As noted in Sec-
tion 5.1, power level increments are quantized, putting the optimiza-
tion problem into the context of those arising in quantized predictive
control, see also [14].

Following the moving horizon principle, (see, e.g., [6, 8, 9]), at
the next time instant, namely k+ 1, a new optimization is carried
out with fresh data and a shifted prediction horizon. This gives rise
to power control increments {δum(k+ 1)} and {δ µ j(k+ 1)}. The
procedure is repeated on-line and ad-infinitum.

The prediction horizon N allows the designer to trade-off per-
formance versus on-line computational effort, larger horizons giv-
ing, in general, better performance since more information is taken
into account in the decision process, cf. [6].

It is worth emphasizing that minimization of V (k) in (15) re-
quires channel gain predictions over the prediction horizon {k +

4If the quantization noise was Gaussian and i.i.d., then P̄(`) would cor-
respond to the conditional posterior covariance of x̂(k); see, e.g., [12, 16].

1,k + 2 . . . ,k + N}. Whilst obtaining such predictions at the GW
side for the channels involving the GW is simple5, predicting the
channel gains from the sensors to the relays at the GW side is dif-
ficult. Fortunately, as will become apparent in Section 6 below,
the proposed control algorithm gives good performance, even if the
channel gains from the sensors to the relays are not predicted accu-
rately.

6. SIMULATIONS

To illustrate the performance of the proposed power control method,
we next present simulations, which use real channel measurements.

6.1 System Setup

We consider a system model (1) with A =
[

1.6718 −0.9948
1 0

]
, Q =

1/2I, and P0 = 0.3I.
We simulate a WSN having M = 2 sensors with

C1 [1 0] , C2 = [0 1] , and variances R1 = R2 = 1/100.
We use one relay, which can be either on or off, a decision which
is taken by the GW. When the relay is on, it uses a constant power
level of µ(k) = 6× 10−5. Moreover, if the relay successfully
receives s1(k) and s2(k) at some time k, then it performs network
coding, by simply XOR-ing the two bit sequences. If only a
single signal value is received by the relay, it remains quiet. In the
simulations, we have fixed the average bit-rate of the sensors to
bm = 8 bit/dim. With this, we construct Huffman entropy codes for
the two sensors. Using these entropy codes in (6), we find that the
average maximum symbols length, which is equal to the average
rate of the relay, is upper bounded by 8.57 bit/dim. Thus, the rate of
the relay is only slightly larger than that of the sensors. The power
of the sensors is restricted to the interval 0 ≤ um(k) ≤ 3× 10−4

and the power increments are restricted to ±3× 10−5. We use a
prediction horizon of N = 1. This only requires one step predictions
of the channel gains.

6.2 Scheduling
We use the scheduling policy depicted in Fig. 2, where each node
is taking turns with a period of T = M + J +1 = 4 cycles. At time
slot t = 0, the first sensor broadcasts s1(0). At time slot t = 1,
the second sensor broadcasts s2(0). During these broadcasts, the
relay and the GW have been listening. At time slot t = 2, if the
relay has successfully received both s1(0) and s2(0), then it forms
r(0) = s1(0)⊕s2(0) and transmits this network coded symbol to the
GW, see (5). If the relay has not successfully received both symbols
s1(0) and s2(0), then, in order to save power, it does not transmit
anything.

At this point, the gateway forms the best estimate of x(0) us-
ing the Kalman filter described in Section 4 and which takes into
account all received information. The GW then uses the power con-
trol algorithm proposed in Section 5 to calculate optimal values for
the next period, i.e., optimal power increments for the sensors and
decides whether or not to turn on the relay. Thus, in a single time
slot, i.e., at t = 3, the GW broadcasts to both sensor nodes as well
as to the relay. At time instant k = 1, the procedure is repeated,
starting at the first sensor, which transmits s1(1) and so on.

6.3 Results
In the simulations we have normalized the energy by varying ρ so
that the sensors and the relay use the same amount of energy in all
cases, see Table 3. Thus, the predictive controller seeks to distribute
the available energy between the sensor nodes and the relay to min-
imize the state estimation error variance.

Our baseline scenario is without relay and network coding, but
where the sensor power levels are controlled [12]. If an uncontrolled

5Channel predictions can be obtained by using techniques described,
e.g., in [2].



ρ V1 V2[nJ] Relay Channel Models Gain V1 System
106 0.0707 63.21 – – Baseline (no relay)
108 0.2021 63.77 Sensor-Relay (predicted), Relay-GW (predicted) – Relay always on

655000 0.0341 63.11 Sensor-Relay (known), Relay-GW (known) 51.77% Relay on/off
680000 0.0382 63.11 Sensor-Relay (predicted), Relay-GW (predicted) 45.87% Relay on/off
430000 0.0682 63.12 Sensor-Relay (fixed at -100 dB), Relay-GW (predicted) 3.54% Relay on/off
560000 0.0391 63.11 Sensor-Relay (fixed at -105 dB), Relay-GW (predicted) 44.70% Relay on/off
1003000 0.0375 63.11 Sensor-Relay (fixed at -110 dB), Relay-GW (predicted) 46.96% Relay on/off
2080000 0.0429 63.11 Sensor-Relay (fixed at -115 dB), Relay-GW (predicted) 39.32% Relay on/off

Table 3: Performance.
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Figure 3: Relay and sensors are controlled by GW by using the
controller proposed in Section 5. In this case we assume perfect
channel predictions of all channels. The relay is successful in 764
out of 1291 instances, i.e., 59.18% efficiency.

relay which is on all the time is used, then the relay uses most of the
available energy leaving very little to the sensors to spend. As a con-
sequence the performance, as measured by V1, will be significantly
worse than the base line scenario, cf. Table 3. Even though the
network coding helps, the always-on strategy wastes energy on the
relay when it is not needed. Significantly better performance can be
obtained if the power controller also manages the relay, as proposed
in Section 5. In fact, if we let the controller decide whether the relay
shall be on or off, and if we use known or predicted channel gains
on all channels, then, according to Table 3 we obtain a noteworthy
performance increase in V1 of almost 52% (known channels) and
46% (predicted channels), respectively. In Fig. 3 the top diagram
illustrates the channel gains between the sensors and the GW and
the bottom diagram illustrates the chosen power levels of the two
sensors. The blue curves correspond to sensor 1, and the red curves
to sensor 2. The black crosses indicate the time slots where the
GW has decided to turn on the relay. The red crosses, on the other
hand, indicate when the relay operation was successful, i.e., when
the relay received s1(k) and s2(k) without errors and furthermore
successfully transmitted r(k) = s1(k)⊕ s2(k) to the GW. The exact
numbers of black and red crosses are provided in the figure text.
The middle diagram show the channel gain from the sensors to the
relay (sensor 1: blue solid line, sensor 2: red dashed line) as well as
the channel gain from the relay to the GW (dotted line).

It is clear from Fig. 3, that the controller trades off energy spent
on the sensors for energy spent on the relay. Only at the deepest
drops in the sensor-GW channel gains beyond time 3500 are the
control actions saturated at the sensors. We note that it is beneficial
to rely on the relay and network coding most of the time.

We have also simulated the situation where the relay uses a
fixed average channel estimate for the sensor-relay channels. In this
case, we conclude that it is safer to underestimate the sensor-relay

channel gains than to overestimate them, see Table 3.
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